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THE PROBLEM OF SIMPLIFYING TRUTH FUNCTIONS
W. V. QUINE, Harvard University

The formulas of the propositional calculus, or the logic of truth functions,
are here to be understood as built up of the statement letters ‘p’, ‘¢’, ‘7", - - + by
just the notations of negation, conjunction, and alternation (or disjunction),
viz. '§’, ‘pg’, and ‘p v ¢’, to any degree of iteration. A formula is valid if it comes
out true under all assignments of truth values to the letters, and consistent if
it comes out true under some. One formula ¢mplies another if there is no assign-
ment of truth values which makes the first formula true and the second false.
Two formulas are equivalent if they imply each other. Implication and equiva-
lence, so defined, are relations of formulas; they are not to be confused with the
conditional and biconditional, commonly expressed by ‘D’ and ‘=’. These
latter notations will be omitted, being translatable into terms of negation, con-
junction, and alternation in familiar fashion.

It will be convenient to use the words ‘conjunction’ and ‘alternation’ in
slightly extended senses. Ordinarily one speaks of a conjunction of two or more
formulas; but I shall speak also of a conjunction of one formula, meaning thereby
simply the formula itself. Thus every formula is a conjunction at least of itself.
Correspondingly for alternation.

Letters and negations of letters will be spoken of collectively as literals. A
conjunction of literals will be called a fundamental formula if no letter appears
in it twice. Literals themselves count as fundamental formulas, in view of my
broad use of the word ‘conjunction’. Finally any alternation of fundamental
formulas will be called a normal formula, and the fundamental formulas of which
it is an alternation will be called its clauses. Fundamental formulas themselves
count as normal, in view of my broad use of the word ‘alternation’; a funda-
mental formula is a one-clause normal formula. In general, thus, normal for-
mulas are simply what have been known in the literature as disjunctive normal
forms, or alternational normal forms, except that normal formulas are subject
to one additional requirement: no letter can occur in a clause twice. A normal
formula cannot contain ‘pgp’ nor ‘$gp’ nor ‘pgp’. Mechanical routines are well
known for transforming any consistent formula into an equivalent which is
normal.*

But there remains a problem which, despite the trivial character of truth-
function logic, has proved curiously stubborn; viz., the problem of devising a
general mechanical procedure for reducing any formula to its simplest equiva-
lent. Since Shannon’s correlation of the formulas of truth-function logic with
electric circuits,t this problem of simplification has taken on significance for
engineering; for, a technique for simplifying truth-functional formulas would be

* See, e.g., §10 of my Methods of Logic, Henry Holt & Co., 1950.
t C. E. Shannon, A symbolic analysis of relay and switching circuits, Trans. Amer. Inst. of
Electrical Engineers, vol. 57, 1938, pp. 713-723,
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522 THE PROBLEM OF SIMPLIFYING TRUTH FUNCTIONS [October

a technique for simplifying circuits. It is noteworthy that the staff of the Com-
putation Laboratory of Harvard University have found it worth while to set
forth elaborate procedures for simplifying truth functions, and even to tabulate
all the simplest equivalents of formulas involving four or fewer letters.}

In a certain theoretical sense, indeed, there is no problem. Given any for-
mula, we can, in principle, survey the totality of simpler formulas involving no
additional letters; for this totality is finite. By truth tables or otherwise, we can
test each of these simpler formulas for equivalence to the given formula, and
thus pick out the simplest equivalent. This procedure is mechanieal; what is
wanted, however, is a mechanical procedure which is short enough to be prac-
tical.

Because of the perspicuity and general convenience of normal formulas, an
interesting specialization of the simplification problem is the problem of finding
a simplest normal equivalent. In fact we may limit our problem to normal for-
mulas from start to finish, since the preliminary step of converting a given for-
mula into some normal equivalent, not necessarily a simplest, presents no
problem. By limiting our consideration thus to normal formulas we are indeed
disregarding inconsistent formulas, but this is no real limitation, since a shortest
equivalent of any inconsistent formula can be supplied out of hand: ‘p$’. So the
problem which I shall examine is that of converting any normal formula into a
simplest normal equivalent. This is not the most general form of the simplifica-
tion problem from the point of view of engineering, since it can happen that some
short non-normal formula represents a still cheaper electric circuit than any
normal equivalent. But it will be more than enough to occupy us on the present
occasion.

Limiting ourselves to normal formulas, we still have some choice as to our
measure of simplicity. We might simply count all occurrences of literals and
alternation signs, or we might put a premium on fewness of clauses and so resort
to a count of occurrences of literals only when comparing formulas which are
alike in number of clauses. What I shall have to say in this paper will not require
any decision, however, between these or other reasonable standards of simplic-

ity.
Let us use the Greek letter ‘¢’ to refer to any literal, and ‘¢’, ‘¢¥’, ‘x’ to refer
to any fundamental formulas, and ‘®’ and ‘¥’ more generally to refer to any
normal formulas. In order to refer to compounds of formulas which are severally
referred to thus by Greek letters, let us use corresponding compounds of the
Greek letters themselves; thus where { is taken as ‘3’ and ¢ as ‘pg’, { V¢ is to be
understood as ‘F v p¢’.

Now it can happen that some clause ¢ is superfluous in a normal formula
¢ vV¥;ie., that ¢ vV is equivalent to ¥ alone. It can also happen that an occur-
rence of a literal { is superfluous in a normal formula ¢¢ v¥; Z.e., that ¢¢ v¥ is

equivalent to ¢ v¥ alone. Weeding out such superfluous clauses and literals is

t Synthesis of Electronic Computing and Conirol Circuits, by the aforementioned staff, headed
by Howard H. Aiken. Harvard University Press, 1951.
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the obvious way of reducing normal formulas to simpler normal equivalents. To
implement this sort of reduction, all we need are convenient techniques for spot-
ting superfluous clauses and literals. Now such techniques are readily devised,
as follows.

To say that ¢ v¥ is equivalent to ¥ is the same as saying that ¢ implies ¥.
Also, as is slightly less evident but readily verifiable, to say that ¢ v¥ is equiv-
alent to ¢ v¥ is the same as saying that ¢ implies { v¥. To test a clause ¢ for
superfluousness in a normal formula, therefore, we have only to see whether ¢
implies the rest of the normal formula; and to test an occurrence of a literal ¢
in a clause ¢¢ of a normal formula for superfluousness, we have again only to
see whether ¢ implies the rest of the normal formula. Now the ¢ in either prob-
lem is a fundamental formula; and any question of implication on the part of a
fundamental formula ¢ is always quickly settled. To find whether ¢ implies any
given formula we have merely to mark as true, throughout the given formula,
all the letters which occur affirmatively in ¢, and as false all the letters which
occur negated in ¢, and then see whether the given formula thereupon comes
out true (for all values of any remaining letters).

Example 1: We find the clause ‘p#’ of ‘pg v p7 v §7' superfluous by testing to
see if it implies the rest, ‘pg v §7'. The test of 1mpllcat10n consists in putting ‘T’
for ‘p’ and ‘F’ for ‘r’ (conformably with ‘p#’) in ‘pg v §#'; the result is ‘Tg v T’
which reduces to ‘gv .

Example 2: We find the first occurrence of ‘¢’ in ‘pg v pgr v pg#' superfluous
by testmg to see if ‘pr’ implies the rest, ‘pgvgv f"' The test of implication con-
sists in putting ‘T’ for ‘p’ and ‘7’ in ‘pg v g v pg#'; the result ‘Tgv gv FgF’ re-
duces to ‘gv {’

Let us call a normal formula 7rredundant if it has no superfluous clauses and
none of its clauses has superfluous literals. We now have a mechanical routine
for reducing any normal formula to an irredundant equivalent. Summed up, it
runs as follows. First try each clause in turn to see whether it implies the rest
of the formula; whenever any clause is found which does imply the rest of the
formula, delete it once and for all before continuing the survey. After all reduc-
tions of this type are at an end, then try each “immediate subclause” (a clause
minus one of its literals) to see whether it implies the rest of the formula; if it
does, delete the superfluous occurrence of the literal. When this process can be
carried no farther, we have an irredundant formula.

It seems reasonable to hope that this procedure of simplification, issuing as
it does in a normal equivalent which is irredundant, may solve our original
problem; namely, the problem of reducing any normal formula to a simplest
normal equivalent. The procedure leads to a normal formula in which no clause
is superfluous and no occurrences of literals within clauses are superfluous; and
it seems reasonable to suppose that such a normal formula is as simple as any
equivalent normal formula can be.

But this is not so. Consider the normal formula ‘pg v pg v g7 v gr’. This is ir-
redundant; no clause can be dropped, nor can any occurrences of literals be
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dropped, without breach of equivalence. Yet this formula has simpler normal
equivalents, indeed two: both ‘pg v pr v g7’ and ‘pg v p7 v gr’, as can be checked
by truth tables. These are simpler than the original by any conceivable standard
of simplicity, but they cannot be got from the original by any process of drop-
ping or curtailing clauses.

The routine of eliminating redundancies by dropping or curtailing clauses
remains useful, for it is quick and easy and it brings gains in simplicity wherever
it can be used. But it does not assure us always of a simplest result. The remain-
der of this paper will be devoted to presenting a general procedure for finding
a really simplest normal equivalent. The procedure will be laborious, but not to
the point of unmanageability.

A normal formula is called developed if all of its letters appear in each of its
clauses; e.g., ‘pgF v pgr’. Any normal formula can be turned into a developed
equivalent by an obvious procedure: any clause ¢ which lacks a letter { can be
supplanted by its equivalent ¢{ v ¢f, and the process can be continued until
each clause contains each letter, duplicate clauses being dropped as they arise.
Example: the normal formula ‘pgr v 73 becomes ‘pgrs v pgrs v pr3 v §r3’, which
in turn becomes ‘pqrs v pgrs v pgrs v fgrs v pgr¥’, a developed normal formula.
The procedure for finding simplest normal equivalents will take developed nor-
mal formulas as its point of departure. Meanwhile a couple of auxiliary notions
must be defined, and their properties established.

DEFINITIONS: ¢ will be said to subsume ¢ if and only if all the literals whereof
¥ is a conjunction are among the literals whereof ¢ is a conjunction. ¢ will be
called a prime implicant of ¥ if and only if ¢ implies ¥ and subsumes no shorter
formula which implies ¥. ¢ will be called a completion of x with respect to ¥ if
and only if ¢ subsumes x and contains all letters of ¥ and no others.

THEOREM 1. Any simplest normal equivalent of ® is an allernation of prime
implicants of ®.

Proof. Every clause ¥ of a normal equivalent ¥ of ¢ implies ¥ and therefore
®. So, if ¥ is not a prime implicant of ®, then ¥ subsumes a shorter formula ¢’
which implies ® and therefore ¥. But then ¥ has one or more redundant occur-
rences of literals, in ¥, which could be deleted (as noted in earlier pages); so ¥ is
not a simplest normal equivalent.

The above theorem brings out the relevance, to our simplification project,
of listing the prime implicants of a formula ®. The way to obtain such a list will
become evident, in the case of developed ®, after the next three theorems.

THEOREM 2, No prime implicant of ® contains letters foreign to ¥.

Proof. If y¢ implies ® and the letter in ¢ is foreign to ®, then any assignment
of truth values which makes y true will make & true, regardless of {; i.e., ¥ will
imply &, and hence y¢ will not be a prime implicant of P.
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THEOREM 3. If ® is a developed normal formula and contains all letters of ¢,
then  implies ® if and only if all completions of ¢ with respect to P are clauses
of ®.

Proof. If ¥ has a completion ¥’ which is not a clause of ®, then each clause
of ® contains a letter affirmatively which is negated in ¥’ or vice versa. Then
the assignment of truth values to letters which makes ¢’ true makes all clauses
of @ false, though making ¥ true; so y does not imply ®. Conversely, each as-
signment of truth values to the letters of ® which makes ¢ true makes some
completion of ¥ true; so, if all the completions of ¥ are clauses of ®, then each
assignment which makes ¥ true makes & true, and hence y implies ®.

From Theorems 2 and 3 and the definition of prime implicant, there follows
this corollary:

THEOREM 4. Y is a prime implicant of a developed normal formula ® if and only
if all letters of Y are among those of ® and all completions of  with respect to P are
clauses of ® and there is no shorter formula ', subsumed by ¥, such that all com-
pletions of ' with respect to ® are clauses of P.

Theorem 4 enables us, given a developed normal formula ¢y v « - -+ v, to
arrive at its prime implicants by the following mechanical routine. We make a
growing list which does not begin as a list of prime implicants, but begins
rather with ¢y, - - -, ¢, and is extended according to the following principle:
whenever two entries can be found in the list which are related as x{ and x¥
(thus identical except for a negation sign), add their common part x as a new
entry in the list. Check marks are to be applied to any entries x{ and x§ which
thus generate new entries, bit a check mark is not to be treated as disqualifying
an entry from reuse; thus ‘pgrs’ can be used once with ‘pgr¥’ to generate ‘pgr’
and once with ‘pgrs’ to generate ‘prs’. When the list has been extended as far as
possible by the above process, we can read off the prime implicantsof ¢, v -« -
v ¢, from it thus: they are the entries which bear no check marks.

Example: Suppose ¢, - -+, @q are ‘pgrs’, pgrs’, ‘pgis’, ‘pgrs’, ‘pgf¥, and
‘pG73’. The first and third of these six yield ‘pgs’ as a seventh entry in our list;
the third and fourth yield ‘p#s’ as an eighth; the third and fifth yield ‘pg#' as a
ninth; the fourth and sixth yield ‘p§#’ as a tenth; and the fifth and sixth yield
‘p73’ as an eleventh. Of the original six entries, all but the second receive check
marks in the process. Proceeding now to generate still further entries from the
five added ones, we get ‘p#' twice and nothing more; and accordingly we apply
check marks to ‘p#s’ and ‘p#5’, and also to ‘pg#’ and ‘pg¥’. (Note the necessity
of applying check marks to all four, despite the duplicate nature of their yield.)
Surveying the finished list, we find just these entries without checks: ‘fgrs’,
‘pgs’, ‘p#. These are the prime implicants of ‘pgrs v pdrs v pgrs v pgis v pgis
v pgFs’.

How to use the list of prime implicants, in order to obtain a simplest normal
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equivalent of a developed normal formula, is suggested by the next theorem to-
gether with Theorem 1.

THEOREM 5. If V¥ is @ simplest normal equivalent of a developed normal formula
®, then each clause of ® subsumes a clause of ¥.

Proof. Consider any clause ¢ of ®. By Theorems 1 and 2, ¥ contains no let-
ters foreign to ¥, nor, therefore, to ¢. Hence any clause of ¥ which ¢ does not
subsume must contain a letter affirmatively which is negated in ¢ or vice versa.
Hence the assignment of truth values to letters which makes ¢ true will make
all clauses of ¥ false except those which ¢ subsumes. Hence ¢ must subsume
a clause of ¥ if ¢ is to imply V. But ¢ does imply ¥, since & is equivalent to ¥.

In view of Theorems 1 and 5, we can obtain a panorama of all simplest nor-
mal equivalents of a developed normal formula ¢, v - - - v¢, as follows. First
we list the prime implicants, as seen earlier. Then we survey the various sub-
sets of the list, such that ¢; for each 7 subsumes a member of the subset. Each
simplest such subset, written as an alternation, is a simplest normal equivalent
of phv -+ - v,

The survey is facilitated by constructing what I shall call the fable of prime
implicants of ¢; v - - - v¢,. The abscissas of the table, inscribed across the top,
are ¢, - - -, ¢n. The ordinates of the table, inscribed down the left side, are the
prime implicants of ¢; v - - - v¢,. In the interior of the table we enter crosses
in those positions whose abscissas subsume their ordinates.

For the example ‘pgrs v pdrs v pgfs v pgrs v pgFs v pgrs’, whose prime impli-
cants were derived earlier, the table is this:

pars pars pqrs pars pqrs PGrs
Bars ) X
Pgqs X X
pF X X X X

Once we have the table of prime implicants, we canvass all ways of so se-
lecting ordinates as to represent all abscissas; i.e., to show crosses under all
abscissas. We settle upon a selection such that the alternation of the selected
ordinates will be as simple as possible. In the above example there is no choice;
no selection of rows, short of all three, exhibits crosses in all columns. So in this
example the simplest normal equivalent is ‘pgrs v pgs v p#, which uses all the
prime implicants.

For another example let us return to ‘pdv pgvgrvgr’, which was cited
earlier to show that irredundant formulas could have simpler equivalents. To
find the simplest normal equivalents of this example by our new general method,
we must first expand the formula into a developed normal formula, then derive
the list of prime implicants, and finally form the table. The table turns out
thus:
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par par pqr par par o
pq X X
gr X X
bF X X
Pq X X
pr X X
g7 X X

Survey of the table shows two ways of so picking three rows as to represent all
columns, so we come out with two simplest normal equivalents, ‘fg v gr v p#’
and ‘pgv prvgs.

Incidentally the list of prime implicants of a formula ® has other uses be-
sides its use in obtaining the simplest normal equivalents of ®. It provides a
panorama of all the fundamental formulas which imply ®; for, the fundamental
formulas which imply ® are simply the prime implicants and all other funda-
mental formulas which subsume any of them.

So far as concerns the topic of the present paper, however, the use of the
table is in finding shortest normal equivalents. As described thus far, the use
of the table for this purpose proceeds by exhaustion: trying all the combinations
of ordinates which represent all abscissas, and comparing all the resulting alter-
nations for simplicity. Now this process of canvassing the table can be speeded
up in many examples (though not in the above two) by the following routine of
preparatory reduction.*

(i) If any columns of the table of a formula ® contain only one cross apiece,
then record for future reference the alternation of the ordinates of those crosses.
Let us call this alternation the core of ®. (The clauses of the core are bound, by
Theorem 5, to be clauses of any simplest normal equivalent of ®.)

(ii) Reduce the table by deleting the ordinates concerned in (i), and deleting
also all abscissas represented by those ordinates. (These abscissas need no fur-
ther consideration because they will be represented by clauses of our final sim-
plification of ® anyway as long as we take care to include the core as part of that
final simplification.)

(iii) Wherever in the surviving table there are abscissas ¢; and ¢; such that
¢ has crosses only in rows in which ¢; has crosses, delete ¢;. (For, our final for-
mula is bound to represent ¢; anyway, through representing ¢;.)

* Note the resemblance of the ensuing operations to the operations on “minimizing charts”
which are set forth in pp. 56 fi. of Synthesis (see preceding footnote). The clauses of what I call
the core (below) correspond to what are called “essential combinations” in Synthesis. More accu-
rately, the clauses of the core are the duals of the essential combinations; for the minimizing charts
produce conjunctional normal forms, in effect, rather than alternation ones. Between the minimiz-
ing charts and the tables of the present paper there are profound differences, however, beyond
that of duality. A minimizing chart begins as a fixed form which depends only on the multiplicity
of letters concerned, and not on the particular formula at hand. It tends in consequence to be more
elaborate than the table of prime implicants,
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(iv) Delete any ordinates whose crosses have all been lost through the can-
celling of abscissas in (ii) and (iii).

The reduced table of prime implicants thus achieved can now be subjected to
the process, described earlier, of canvassing the ways of selecting ordinates and
singling out the most economical. Each end result thus obtained must be sup-
plemented by adjoining the core to it, in alternation.

Example: pgr v pf v pgs v pr v §grs.

The table of prime implicants turns out as follows:

bars pgrs pgrs pgfs pdrs pGrs Ppgrs Pars Pars pars pars
Pq X X X X
qr X X X X
pF X X X X
pr X X X X
a3 X X
qrs X X

Now we apply (i); 7.e., observing that the fifth and ninth columns contain only
one cross apiece, we record the alternation of the ordinates of those two crosses;
viz., ‘p7 v pr'. This is the core. Then, applying (ii), we cancel the ordinates ‘p#’
and ‘¢’ of the table, and also the eight columns (viz., third through tenth) in
which those cancelled rows contained crosses. To what is left of the table, we
apply (iii); this enables us to cancel the first or second column at will, say the
second. We find no way of applying (iv), so we are now down to our reduced
table of prime implicants, which is just this:

bars pars
pq X
qr X
pqs X
qrs X

Inspection of this table shows just four shortest alternations of ordinates repre-
senting both abscissas. They are:

qufq-gv qugiii Q’qu}, quq'i’f.
Adjoining any of these by alternation to the core ‘p7 v pr’ gives a simplest nor-
mal equivalent of the original formula. We thus end up with four simplest nor-
mal equivalents:
pFv prv pg v pgs, PFV Prv pg v §7s,
pFv prvar v pas, PPV Prv gr v gis.
Sometimes the reduced table of prime implicants turns out to be an utter

blank, so that the core stands alone as the simplest normal equivalent. An exam-
ple is ‘p7 v drs v pg7’. Here the table of prime implicants is:
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bafs  pgFs  pgis  pgFs  prs pdrs  Bars
pf X X X X
a7 X X X X
pgs X P

Applying (i) to this, we obtain ‘p7 v JF v pJs’ as core. All rows and columns
disappear under (ii), so that we are left with ‘p7 v §7 v 535 itself as the simplest
normal equivalent of ‘p7 v pgrs v pg#'.

The method admits of one further refinement which, though irrelevant to
all the foregoing examples, saves much labor where applicable. I am indebted for
it in part to Nelson Goodman. Given a formula for which a simplest normal
equivalent is wanted, the new tactic begins by transforming the formula not
into a developed normal formula, but rather into an irredundant normal formula
by the routine of the early pages of this paper. This irredundant alternation is
then separated into as many subsidiary alternations as possible such that no two
of them have letters in common. (E.g.,' p§ v #s v g v’ would be separated into
‘pgv pq', ‘7s’, and ‘t'.) Then we expand each of these subsidiary alternations
independently into developed normal form and proceed to find a simplest nor-
mal equivalent for it, by use of a reduced table of prime implicants as hitherto
explained. Finally we make a single alternation of the several results, and this
is a simplest normal equivalent of the original formula.

The value of this separation expedient, where applicable, is evident: it saves
the exorbitant development of all clauses with respect to all missing letters.
But we must prove that the modified method always leads to the simplest nor-
mal equivalents. This will be proved as Theorem 8 below; the two intervening
theorems are needed as lemmas.

THEOREM 6. The only irredundant normal formulas which are valid are ‘p v p',
‘gv g, elc.

Proof. Let ¢t v¥ be a valid normal formula. Consider then any assignment
of truth values to letters which makes ¢ true. It makes ¢¢ v¥ true, since this
is valid; moreover ¢, being true under this assignment, can be deleted from
¢t v¥ and the result ¢ v will still be true. Thus every assignment which makes
¢ true makes { vV true; i.e., ¢ implies { vW. But this implication was seen, in
early pages of the paper, to be the criterion of superfluousness of the occurrence
of ¢ in ¢ v¥. We see therefore that no valid irredundant normal formula can
have the form ¢{ v¥. Still every valid normal formula is obviously an alterna-
tion of at least two clauses; any single clause is falsifiable. Therefore every valid
irredundant normal formula must be an alternation of clauses none of which is
of the form ¢¢; each of which, in other words, is a single literal. Every valid
irredundant normal formula has, in short, the form ;v - - - v {,. But obviously
two of {1, - - -, {» must, for validity of {1 v - - - v{,, be negations one of the
other. But then each of {3, - - -, ¢, other than those two is superfluous; or rather
there are no others, since {1V -+ v{, is supposed to be irredundant. So
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Giv - Vs just ‘pv ', or perhaps ‘gv g, efc.

THEOREM 7. If no two of &1, - - -, ®, have letters in common, and ¢ is a prime
implicant of ®1v - - - v ®,, then ¢ contains letters exclusively of ®; for some 1.

Proof. By Theorem 2, there is an ¢ such that some of the letters of ¢ appear
in ®;. Now suppose (which will be proved impossible) that there are also letters
in ¢ foreign to ®;; 1.e., that ¢ is Yx where all the letters of ¥ but none of the
letters of x are letters of ®;. Since ¢ is a prime implicant, neither ¥ nor x implies
P, v - - - vd, Hence ¢ does not imply ®;, and x does not imply &, v - - -
vd, ;vd, ;v - - - vd, Hence there is an assignment of truth values to the
letters of ®; which makes ¢ true and ®; false, and there is an assignment of
truth values to the rest of the alphabet which makes x true and &, v - - - v &,
vd,,y v -+ - v, false. Pooling the two assignments (which we can do since
the sets of letters concerned are mutually exclusive), we have an assignment
which makes ¢ true and ;v - - - v &, false. But this is impossible, since ¢ by
hypothesis implied & v - - - v&,.

THEOREM 8. If ®1v - - - v ®,(n>1) isirredundant and no two of &y, - - -, Pn
have letters in common, then any simplest normal equivalent of &1v - - - v &, will
be of the form Viv - - - vV, where ¥y, - - -, ¥, are equivalent respectively to
Ql) Ty Qn-

Proof. Let ¥ be a simplest normal equivalent of ;v - -+ v &, Then &,
for each 7, implies ¥. Now suppose that ®; has no letters in common with V.
Implication can occur without common letters only in the extreme cases where
the implying formula is inconsistent or the implied one is valid. But $;, being
normal, is consistent. So ¥ would have to be valid. Then its equivalent &, v - - »
v &, would be valid, and hence, by Theorem 6, would be simply ‘pv $ or
‘gv @ or the like. But by hypothesis this is impossible; for by hypothesis
n > 1, and therefore $;v - - - v &, contains two or more distinct letters. We
conclude, therefore, that ®, for each 7 has letters in common with ¥. Conversely,
by Theorems 1 and 7, each clause of ¥ contains letters exclusively of ®; for
some <. Therefore ¥ has the form ¥, v . .. v¥, where ¥;, for each 7, contains
letters exclusively of ®;. It remains to show that ®; implies ¥; and vice versa.
We saw that &;v - - v &, is not valid; neither, therefore, is its equivalent
¥iv - - - vV, valid. So there is an assignment ¥, of truth values to the letters
of ;v - - vW, ,vV¥, ;v - - - v¥, which makes the latter formula false.
Consider now any assignment B, of truth values to the letters of ®;, which
makes ®; true. We can combine 8 with ¥, since the sets of letters concerned are
mutually exclusive; and the combined assignment makes ®; true and ¥; v - - -
v¥, ;v¥.,v ... vV, false. Since the combined assignment makes &; true,
it must make ¥;v - - . v¥, true (for this latter is equivalent to ;v - - -
v ®,). More particularly then it must make ¥; true (for we just noted that it
made the rest of ¥, v - - - v, false). But the letters of ¥; receive truth values
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only from 8B, not ¥; and B was any assignment which makes ®; true. There-
fore ®; implies ¥;. An exactly parallel argument, interchanging the roles of
&y, - - -, &, with those of ¥y, - - -, V¥, shows conversely that ¥; implies &;,
thus completing the proof of Theorem 8.

Summarized, our results are as follows. We found, to begin with, a fairly
rapid method of reducing any normal formula (and therefore any consistent
formula) to the extent of locating and cancelling any redundancies. But we
found also that an irredundant normal equivalent was not necessarily a simplest
normal equivalent. Accordingly, taking a fresh start, we worked out a routine
which could be depended upon to reveal a simplest normal equivalent, and
indeed all the simplest normal equivalents. This routine, though not unman-
ageable, turned out to be far more laborious than the method of merely locating
and cancelling redundancies. Moreover, the two methods are almost independ-
ent. The laborious method of finding simplest normal equivalents depends on a
preliminary expansion into a developed normal formula, and this expansion is
not affected by any previous cancelling of redundancies. The only way in which
the cancelling of redundancies contributes to the ultimate technique is in con-
nection with the auxiliary expedient of separation developed in these last few
pages. Clearly it would be desirable to find a quicker way of getting simplest
normal equivalents, say by gearing the whole routine to irredundant formulas
rather than to developed formulas. I have not seen how to manage this.

It may be useful to note one particular class of normal formulas which can
be exempted from the foregoing procedures altogether; viz., those normal for-
mulas in which no one letter occurs both affirmatively and negatively. Such a
formula is already reduced to simplest normal form as soon as we have merely
deleted those of its clauses that subsume others of its clauses. I have proved
this fact elsewhere,* for the case where all letters are affirmative; and the present
extension then followed by substitution of negations of letters for letters.

* Dos teoremas sobre funciones de verdad, Memoria del Congreso Cientffico Mexicano, (afo de
1951), vol. 1 (ciencias fisicas y matemdticas). At press.

THE DIFFERENTIAL EQUATION OF A CONIC AND ITS
RELATION TO THE ABERRANCY

A. W. WALKER, University of Toronto

1. Introduction.

(1) General remarks. In this paper,§=tan—!(y') is the angle which the tangent
at a general point of a plane curve y=v(x) makes with the x-axis; accents and
dots denote differentiation with respect to x and 6 respectively. The notation
£=¢?=p—?? is used, where p is the radius of curvature; any equation relating



